Carpool-based Parking Assignment Policy

October 19, 2023
Presenter: Daniel Rodríguez Román, PhD

Team

Optimization:
- Hector J. Carlo
- Carlos A. Morel
- Ana Sofia Rivera
- Fernando Acosta (UWM)

Prototype Development
- Nayda G. Santiago
- Celimar Deida Villafañe
- Ruben E. Leoncio Cabán
- Misael Moctezuma
- Jeimy M. Santiago

Policy evaluation:
- Peng Chen (USF)
- Xiankui Yang (USF)
- Ran Tao (USF)
- Daniel Rodríguez
- Alberto Figueroa
Outline

- Research Objectives
- Motivation
- Previous Work
- Model Formulation and Heuristics
- Exploring Parking Policy Preferences
- System Prototype
- Future Research Directions

Objectives

- Develop an equitable strategy to mitigate parking scarcity and mobility problems
 - Develop mathematical models to implement the strategy
 - Analyze public perception of the strategy
 - Test the strategy in the real-world
Motivation

- The “lack” of parking spaces has caused problems at UPRM
Not a Unique Situation

- **Cruising for parking**
 - A non-trivial proportion of urban traffic can be explained by people searching for parking
 - An inefficient use of resources with a high economic, environmental, and public health cost

What can we do?

- Land Use Planning
- Operations Management
- Rule/Law Enforcement
- Encouraging Carless Travel
- Increasing Parking Capacity
Parking Demand Management

- Goal is to reduce or shift the demand for parking

- Voluntary (Carrot)
 - Carpooling incentives
 - Incentives for carless travel

- Mandatory (Stick)
 - Parking pricing
 - Parking allocation system

- Shifting Activity Participation
 - For example, shift class schedules

Parking Pricing

- “Cities should charge the right prices for curb parking because the wrong prices produce such bad results” (Shoup 2011)

- Pricing is a popular strategy among transportation economists, engineers, and planners, among others

- Major parking pricing projects have been launched in recent years (e.g., SFpark)
The Challenges with Parking Pricing

- There are at least two major problems with pricing:
 - Political opposition (political context)
 - Equity concerns (social context)
- These are not unsurmountable problems
- Parking pricing might be regressive, but the other financing alternatives might be as (or more) regressive than pricing parking

Application Context of Proposed Strategy

- Strategy should be most relevant for communities with:
 - Limited public transportation options
 - High proportion of low-income community members
 - Low population density
 - High concentration of activities (e.g., universities)
- No pricing, carpool-based parking assignment
 - Carpools as substitute for public transportation
Related Work

Contribution

- New travel demand management strategy
- Proposed model can be considered an extension to static ride-matching problems that assume:
 - flexible customer roles (i.e., drivers or riders)
 - multiple rider pick-ups (1-to-many matching)
 - guaranteed ride-back trips
Previous Peer-to-Peer Ride-Matching Work

- Previous ride-sharing models consider (Tafreshian et al., 2020):
 - transit service transfers,
 - pricing schemes and the use of HOV lanes, and
 - rider transfers between drivers, among other issues
- To our knowledge, our model is the first in the literature to account for parking considerations

Non-pricing Parking Management

- Two broad categories:
 - Static systems with cyclical allocation of parking slots
 - Dynamic systems for real-time parking slot allocation
- Example: Goyal and Gomes (1984)
 - Linear programming model to allocate permits among different individual in university context
 - Objective: minimize total walking distances from parking lots to final destinations
Non-pricing Travel Demand Management

- Examples:
 - Highway access booking systems (Edara & Teodorović, 2008; Ma et al., 2010; Liu et al., 2013)
 - Downtown space reservation systems (Zhao et al., 2010)
 - Tradable permits for road access (Fan & Jiang, 2013)

Model Formulation and Heuristics
Proposed Solution: Parking Allocation and Ride-Sharing System (PARS)

- Centralized system to allocate parking and coordinate carpools

PARS:

- Selected Drivers and Carpools
- Selected Parking Reservations

PARS: General Mathematical Formulation

Maximize Social Objectives

Subject to
- Parking Capacity Constraints
- User Schedule Constraints
- Vehicle Capacity Constraints
- Other Considerations
Problem

▪ The goal is to minimize a measure of generalized cost

▪ For details, see:

Heuristics

▪ Ride Decomposition (RD):
 • decomposition-based heuristic that first solves a sub-problem associated with going to the venue, and given that solution, it solves the sub-problem associated with returning from the venue

▪ Quick Converge (QC):
 • finds minimum-cost solutions and manipulates them to consider parking capacity restrictions.
Numerical Experiments

- RD and QC heuristic algorithms can:
 - solve the problem, on average, 42.23% and 86.39% faster than a commercial solver
 - find solutions that are 3.61% and 3.49% from optimal, respectively.

<table>
<thead>
<tr>
<th>Index</th>
<th>f</th>
<th>DR</th>
<th>Dp</th>
<th>Ave t_{W}</th>
<th>Ave RT$_{W}$</th>
<th>Ave t_{C}</th>
<th>Ave RT$_{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>2:1</td>
<td>2:1</td>
<td>0.00%</td>
<td>−19.11%</td>
<td>0.00%</td>
<td>−96.76%</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>2:1</td>
<td>3:1</td>
<td>2.15%</td>
<td>−20.86%</td>
<td>3.30%</td>
<td>−87.52%</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>2:1</td>
<td>4:1</td>
<td>8.11%</td>
<td>−41.14%</td>
<td>6.97%</td>
<td>−89.22%</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>4:1</td>
<td>2:1</td>
<td>0.11%</td>
<td>−25.86%</td>
<td>0.00%</td>
<td>−88.25%</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>4:1</td>
<td>3:1</td>
<td>2.41%</td>
<td>−28.56%</td>
<td>3.57%</td>
<td>−85.89%</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>4:1</td>
<td>4:1</td>
<td>16.15%</td>
<td>−34.60%</td>
<td>14.29%</td>
<td>−81.11%</td>
</tr>
<tr>
<td>7</td>
<td>500</td>
<td>2:1</td>
<td>2:1</td>
<td>0.50%</td>
<td>−47.72%</td>
<td>0.50%</td>
<td>−87.30%</td>
</tr>
<tr>
<td>8</td>
<td>500</td>
<td>2:1</td>
<td>3:1</td>
<td>0.51%</td>
<td>−49.27%</td>
<td>0.25%</td>
<td>−90.68%</td>
</tr>
<tr>
<td>9</td>
<td>500</td>
<td>2:1</td>
<td>4:1</td>
<td>5.59%</td>
<td>−51.49%</td>
<td>5.90%</td>
<td>−90.62%</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>4:1</td>
<td>2:1</td>
<td>0.92%</td>
<td>−30.81%</td>
<td>0.00%</td>
<td>−87.18%</td>
</tr>
<tr>
<td>11</td>
<td>500</td>
<td>4:1</td>
<td>3:1</td>
<td>1.29%</td>
<td>−55.80%</td>
<td>0.23%</td>
<td>−86.25%</td>
</tr>
<tr>
<td>12</td>
<td>500</td>
<td>4:1</td>
<td>4:1</td>
<td>10.26%</td>
<td>−55.79%</td>
<td>12.52%</td>
<td>−89.57%</td>
</tr>
<tr>
<td>13</td>
<td>1000</td>
<td>2:1</td>
<td>2:1</td>
<td>0.60%</td>
<td>−45.65%</td>
<td>0.00%</td>
<td>−89.99%</td>
</tr>
<tr>
<td>14</td>
<td>1000</td>
<td>2:1</td>
<td>3:1</td>
<td>0.77%</td>
<td>−41.30%</td>
<td>0.00%</td>
<td>−82.72%</td>
</tr>
<tr>
<td>15</td>
<td>1000</td>
<td>2:1</td>
<td>4:1</td>
<td>5.27%</td>
<td>−45.24%</td>
<td>5.65%</td>
<td>−86.57%</td>
</tr>
<tr>
<td>16</td>
<td>1000</td>
<td>4:1</td>
<td>2:1</td>
<td>1.43%</td>
<td>−49.30%</td>
<td>0.00%</td>
<td>−83.62%</td>
</tr>
<tr>
<td>17</td>
<td>1000</td>
<td>4:1</td>
<td>3:1</td>
<td>1.94%</td>
<td>−39.36%</td>
<td>0.00%</td>
<td>−72.73%</td>
</tr>
<tr>
<td>18</td>
<td>1000</td>
<td>4:1</td>
<td>4:1</td>
<td>6.00%</td>
<td>−51.28%</td>
<td>10.68%</td>
<td>−84.15%</td>
</tr>
</tbody>
</table>

Exploring Parking Policy Preferences
Survey

- Survey explored:
 - factors that influenced people’s preference for PARS vs. parking pricing
 - People’s stated comfort with giving a ride to or traveling with strangers
- Number of participants:
 - UPRM: 456
 - USF: 261

Context of Parking Situations

- UPRM:
 - Permit system based on community member classification
 - Distributed free from out-of-pocket cost
- USF:
 - Community members must buy permits
Stated-Preference Questions

Discrete Choice Analysis

- Multinomial logit models estimated using data from stated-preference questions

Estimated Parameters for Parking Choice Model – Sociodemographic Attributes

<table>
<thead>
<tr>
<th>Variables</th>
<th>Estimate</th>
<th>P-value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-0.010</td>
<td>0.327</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>0.458</td>
<td>0.001</td>
<td>***</td>
</tr>
<tr>
<td>Graduate student</td>
<td>-0.268</td>
<td>0.179</td>
<td></td>
</tr>
<tr>
<td>Staff</td>
<td>0.026</td>
<td>0.941</td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td>-0.381</td>
<td>0.321</td>
<td></td>
</tr>
<tr>
<td>USF</td>
<td>-1.354</td>
<td><0.001</td>
<td>***</td>
</tr>
<tr>
<td>Years</td>
<td>-0.054</td>
<td>0.450</td>
<td></td>
</tr>
</tbody>
</table>
Discrete Choice Analysis

Estimated Parameters for Parking Choice Model – Alternative Attributes

<table>
<thead>
<tr>
<th>Variables</th>
<th>Estimate</th>
<th>P-value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking costs ($ units)</td>
<td>0.124</td>
<td><0.001</td>
<td>***</td>
</tr>
<tr>
<td># of passengers</td>
<td>-0.335</td>
<td>0.006</td>
<td>**</td>
</tr>
<tr>
<td>Added travel time – carpooling (minute units)</td>
<td>-0.065</td>
<td><0.001</td>
<td>***</td>
</tr>
<tr>
<td>Location: Parking cost</td>
<td>0.084</td>
<td>0.019</td>
<td>*</td>
</tr>
</tbody>
</table>

Comfort with Carpooling

“I would be comfortable with giving a ride to a fellow student as part of a university coordinated carpooling program.”

![Comfort with Carpooling Chart]
Comfort with Carpooling

“I would be comfortable with being a passenger in a university coordinated carpool”

Prototype and Future Directions
Prototype at UPRM

- Reservation Optimized Carpool System

Prototype Components

- **Hardware:**
 - Solar-powered parking mechanical arm to control

- **Software:**
 - ROCS Carpool app
 - Geolocation-based approach to verify that selected carpool members are in vehicle
 - Currently working on various types of app notifications
System Launch

- System tests and improvements are currently being conducted
- Launch should be late October or early November 2023
- Know unknowns and unknown unknows
 - For example, will people try to game the system?
- Surveys to assess user experience
Future Research Directions

- Development of hybrid pricing – PARS
 - To support revenue generation
- Faster heuristics
- Optimize the operations of ROCS
 - Student project with funds from Toyota Puerto Rico

Acknowledgement

- This work was supported by the National Institute for Congestion Reduction (NICR) and funded by the U.S. Department of Transportation Office of the Assistant Secretary of Research and Technology University Transportation Centers Program under Grant No. 69A3551947136.
Thank you

- Questions:
 - daniel.rodriguez6@upr.edu

Referencias

Referencias

